基礎物理

	95 課綱			差異比較		
一、緒論	1.物理學的重要性及與其他 科學的關係	1-1 簡介物理學的重要性。 1-2 簡介物理學探討的方向,及其涵蓋的範疇。 1-3 簡介物理學與數學、化學、生物學、天文學、地球科學等基礎科學的關係。 1-4 簡述物理學與醫學、太空科學、環境科學、建築土木及電機電子等應用科學的關係。	一、緒論	1.物理學簡介	1-1 簡介物理學探討的 方向及其涵蓋的範疇。 1-2 簡要陳述物理學的 演進。	
	2.物理量的測量與單位	2-1 時間、長度、質量的測量。 2-2 介紹國際單位系統。		2.物理量的單位	2-1 介紹國際單位系 統。	
			二、物質的組成	1.生活中常見 的物質,無論 是氣態、液態 或是固態都 是由微小的 原子所組成	1-1 說明原子的大小。 1-2 從原子觀點解釋固態、液態及氣態之間的差異。 1-3 說明我們現在已經有	新增此章

			,	1	
				的。	技術可以直接觀察到
					原子、甚至「移動」
					原子。簡單說明由於
					我們對於原子與分子
					的理解加深、以及技
					術的進步,使得奈米
					科技有很大的發展空
					間。
				2.原子與原子	2-1 說明原子內部有帶
				核的組成	正電的原子核,原子核
					外有電子環繞。
					2-2 說明原子核的大
					/J\ °
					2-3 說明原子核內有質
					子與中子,質子帶正
					電,中子不帶電。簡
					單說明質子、中子是
					由夸克所組成的。
	1.生活中常見的運動	1-1 從日常生活中見到的 各種運動中談到位	三、物體的運動	1.物體運動的	1-1 說明位置、位移、
二、運動與力		置、位移、速度的物		軌跡	速
_ ~~~		理意義,並簡要說明			度、加速度的意義。
		等加速度直線運動。			

2.日常生活中的力	2-1 列舉日常生活中力的		2.牛頓運動定	2-1 說明質量代表物體	
	作用實例,並區分力		律	運動慣性之大小、慣性	
	的種類。		17	定律、力對物體運動狀	
	2-2 說明重力的性質及其 應用 (如大氣壓力及				
	人造衛星…等)。			態的影響、以及運	
				動方程式(F=ma)的	
	2-3 說明摩擦力的性質及 其應用。			意義。	
				2-2 說明日常生活中常	
	2-4 說明彈簧力的性質及			見的摩擦力及彈簧力的	
	其應用。			性質。	
3.力與運動	3-1 說明力對物體運動狀態的影響。				
	3-2 說明運動定律。				
			3.克卜勒行星	3-1 簡單介紹克卜勒三	新增
			運動定律	大定律發現的歷史背景	以前高二課程
				及內容。	
		四、物質間的基本交互作	1.重力	1-1 說明帶質量的物體	以前的力學
		用		之間有萬有引力,以及	移動順序
				此力大小與物體間距	
				離的平方成反比。	
				1-2 說明可以從牛頓運	
				動方程式及平方反比重	
				力解釋克卜勒行星運	

			動定律。	
		2.電力與磁力	2-1 說明帶電荷的物體	以前的靜電學
			之演繹式之推導及前節	移動順序
			間有靜電力。原子內帶	
			負電的電子與帶正電	
			的原子核之間有相吸	
			的庫侖靜電力,因此電	
			子及原子核才會組合	
			成原子。電子與電子之	
			間則有相互排斥的靜	
			電力。	
			2-2 說明磁鐵間有磁	
			力、簡介磁力線與磁	
			場的概念。	
		3.強力與弱力	3-1 說明質子與質子、	
			質子與中子、中子與中	
			子之間有「強力」,因	
			此能束縛在一起形成原	
			子核。但是其作用力範	
			圍很短,祗限制在原子	
			核大小的尺度內,因此	

			•		
				我們在日常生活中感覺	
				不到它的作用。	
				3-2 說明單獨的中子並	
				不穩定,會自動衰變成	
				質子及其他粒子,某	
				些原子核也會有類似	
				的衰變。我們無法以	
				重力、電力、磁力或	
				強力來解釋中子的衰	
				變現象,因此我們得	
				知自然界中還有另外	
				一種交互作用,我們	
				稱它為「弱交互作用	
				(或弱力)」。由於弱	
				交互作用存在,中	
				子才會衰變。弱力作	
				用的範圍比強力作用	
				的範圍更短。	
	1.溫度與熱量	1-1 說明如何測量溫度。			簡化到能量中
三、熱		1-2 介紹熱量的單位「卡」			
		及其測量;簡介比熱與 熱容量。			
		水(甘里)			

2.熱與物態變化	2-1 說明熱脹冷縮現象,並 列舉日常生活中的應 用實例。 2-2 說明水的三態。				
3.熱與生活	3-1 簡介熱的傳播,並從保 溫與散熱的觀點介紹 熱學在生活中的應用 (如冷氣機、冰箱、電 暖器…等)。				
1.聲音的發生與傳播	1-1 闡釋聲音因物體振動 而起。 1-2 說明聲音須靠介質傳 播。	六、波	1.波的性質	1-1 說明波速、頻率、 波長的關係(數學式)。 1-2 以簡單的例子 (如:水波、聲波)及 圖示的方式說明波的反 射、折射、干涉與繞射 現象。 以圖示方式介紹干涉現 象。 1-3 利用聲波介紹都卜 勒效應。	簡化到波動 新增以前高三都卜勒 效應。
2.聲音的反射	2-1 解釋回聲現象及其應 用。				
3.樂音與樂器	3-1 說明人耳可聞之頻率 範圍。				

		3-2 介紹樂音三要素:響度、音調、音色。			
五、光	1.人類對光的認識	1-1 簡介人類對光的認知歷史。	六、波	2.光與電磁波	2-1 介紹歷史上關於光 的兩個主要理論:微粒 說、波動說。 2-2 介紹光的反射及折 射現象。 2-3 介紹光的干涉及繞 射現象。 2-4 說明由於有電磁感 應現象,電磁場可以在 空間中傳播,從而形 成所謂的電磁波。介 紹馬克士威從他的方 程式預測了電磁波的 存在,而且計算出電 磁波的速度即為光 速。科學家因此認知 光即是電磁波。介紹 電磁波譜及在日常生 活中的應用
	2.光的傳播	2-1 說明光的直進(以針孔 成像及影子的產生為			

		例)。			
	3.光的反射與折射的現象	3-1 闡釋光的反射定律及 平面鏡的成像。 3-2 說明日常生活中光的 反射現象和應用。 3-3 以日常生活中的例子 說明光的折射現象, 並簡介薄透鏡的成 像。			
	4.光與生活	4-1 簡介光通量的概念,照度與光源之發光強度及距離的關係。並說明日常生活所需的照度。 4-2 從稜鏡與色散、光的三原色介紹物體的顏色。 4-3 視覺暫留的說明及應用。			
六、電與磁	1.電的認識	1-1 簡介庫侖靜電定律·說 明物體帶電起因、摩 擦起電、感應起電, 以及生活中常見的靜 電現象和應用(如閃電 與避雷針…等)。	五、電與磁的統一		移至第二章
	2.直流電與交流電	2-1 說明電流形成的原 因,並說明電源分直 流電源與交流電源兩			

1					
		種。			
	3.磁鐵與地磁	3-1 介紹生活中常見磁鐵 的磁場與應用,簡介 地球的磁場。			
	4.電流的熱效應及磁效應	4-1 說明生活中常見電流 熱效應的應用(如電 鍋、電熱器…等)。 4-2 簡介生活中電流磁效 應的應用(如電磁鐵… 等)。	1.電流的磁效應	1-1 說明電流會產生磁場。 介紹安培右手定則。	
	5.變壓器與電力輸送	5-1 說明變壓器的應用與電力輸送的原理。	2.電磁感應	2-1 介紹法拉第感應定律。由電磁感應來說明電與磁是不可分割的現象,因此我們把電力以及磁力統稱為電磁力。說明馬克士威把電磁力所遵守的定律全部整理在一起,因此人們稱這些方程式為馬克士威方程式。	
	6.家庭用電與安全	6-1 說明電功率與電度的 計算。 6-2 介紹短路、斷路、超			

	1.能量的形式與轉換	載、火線、中性線、 地線、保險開關、接 地等常識。 6-3 介紹電燈、電鍋、電熨 斗、電視、電冰箱等家 電的 使用並歸納出 用電安全守則。 1-1 簡介力學能、熱能、光	七、能量	1.能量的形式	1-1 簡介力學能、熱	含有以前的熱學
七、能量與生活		能、電能、化學能等各種形式的能。 1-2 舉例說明各種能量間的轉換,以及能量守恆的觀念。		2.能量間的轉 換與能量守 恆	能、光能、電能、化學 能等各 種形式的能。1-2 介紹 克氏溫標(絕對溫標)。 說明溫度越高代表物體 中原子的平均動能越 大。 2-1 舉例說明各種能量 間的轉換,以及能量守 恆的觀念。介紹質量 及能量可以相互轉換 的概念。介紹 E = MC2 的公式。	
	2.核能與替代能源	2-1 簡述原子核的分裂與 核能發電並介紹輻射 安全。 2-2 簡述原子核的融合與		3.核能	3-1 簡述原子核的分裂 及 核能發電並介紹輻射	

		核能。 2-3 介紹目前發展中的各種發電方式(如風力發電、潮汐發電、地熱發電、太陽能發電…等)。			安全。 3-2 簡述原子核的融合 及 核能。	
	3.能量的有效利用與節約	3-1舉例說明太陽能、化學能、電能等在日常生活中的使用。 3-2說明能量守恒與能源匱乏危機,簡介能源的有效利用及再生,並舉例說明日常生活中如何節約能源。		4.能量的有效利用與節約	4-1 簡介能源的有效利 用及再生,並舉例說明 日常生活中如何節約能 源。	
八、現代科技	1.現代科技簡介	1-1 簡介雷射、半導體、超 導體及其應用。 1-2 簡介液晶、電漿及其應 用。 1-3 簡介奈米科技及其應 用。				大部份刪除 只簡單介紹奈米
九、近代物理觀	1.近代物理觀簡介	1-1 從古典物理到近代物理。 1-2 從形而上定義到操作型定義。 1-3 從連續性到量子化。 1-4 從精確性到測不準性。	八、量子現象	1.光子與電子 以及所有微 觀粒子都具 有波粒二象 性	1-1 簡介光電效應,說 明光 具有粒子性。引入E= hv公式。1-2 舉例說 明光電效應在 日常生活中之應用。	

1-3 简介雙級電子下 涉 現象,藉此剥留子 具有波動性。 1-4 指出午報運動定律 在 微觀(原子)尺度下並 不獲用:此時預用之理 論稱為量子論。 2-1 說明原子外圈的電 子 「就具有特定的能 量,稱之為能限。 。可障單指由能階的存 在及電子的波動術有 密切關聯。 2-2 說明電子可以號曲 吸 吸、或或執情沒难量(頻 率)之光子由一個維胎 類層到另一個能階,從 而31人原子光謝之概		1-5 從決定性到機率性。		A A MAN A BANK NA TO THE	
理象·藉此說明電子 具有波動性。 1-4 指出牛碩運動定律 在 機體(原子)尺度下並 不適用: 此時適用之理 論稀為量子論。 2-1 說明原子外匯的電 子 只能具有特定的能 量,稱之為能略。 可嚴單指出能略的存 在反電子的波動性有 密切顯聯。 2-2 說明電子可以經由 吸 収或發射特定能量(頻 率)之光子由一個能階 隨變到另一個能階。從		1-3 促决定性到機争性。			
具有波動性。 1-4 指出牛頓運動定律 在 微觀(原子)尺度下並 不適用:此時選用之理 論稱為量子論。 2-1 說明原子外團的電 子 、完能具有特定的能 量,稱之為能階。 可爾單相出縮階的存 在及電子的波動性有 密切關聯。 2-2 說明電子可以經由 吸 收或發射特定能量(頻 率)之光子由一個能階 躍遷到另一個能階,從				涉	
1-4 指出牛頓運動定律 在 微觀(原子)尺度下並 不適用:此時適用之里 論稱為量子論。 2.原子光譜 2.1 說明原子外團的電 子 只能具有特定的能 量・稍之為能階。 可簡單指出能階的存 在及電子的波動性有 密切關聯。 2.2 說明電子可以絕由 吸 收或發射特定能量(頻 率)之光子由一個能階 圍壞到另一個能階,從				現象,藉此說明電子	
在 微觀(原子)尺度下並 不適用:此時適用之理 論稱為量于論。 2.原子光辯 2.原子光辯 2.原子光辯 2.原子光謝 2.原子光問 2.原子光謝 3.原子外圍的電 子 只能具有特定的能 量・科之為能階。 ・可簡單指出能階的存 在及電子的波動性有 密切顯聯。 2.2 說明電子可以經由 吸 收或發射特定能量(頻 率)之光子由一個能階 躍躍到另一個能階。				具有波動性。	
微觀(原子)尺度下並 不適用:此時適用之理 論稱為量子論。 2.原子光譜 2.原子光譜 2.原子光譜 2.原子光譜 2.原子外圈的電 子 只能具有特定的能 量,稱之為能階。 可簡單指出能階的存 在及電子的波動性有 密切關聯。 2.2 說明電子可以經由 吸 收或發射特定能量(頻 率)之光子由一個能階 羅遷到另一個能階,從				1-4 指出牛頓運動定律	
不適用:此時適用之理 論稱為量子論。 2.原子光譜 2.1 說明原子外圍的電 子 只能具有特定的能 量,稱之為能階。 可簡單指出能階的存 在及電子的波動性有 密切關聯。 2.2 說明電子可以經由 吸 收或發射特定能量(頻 率)之光子由一個能階 闡遷到另一個能階,從				在	
□ 注				微觀(原子)尺度下並	
2-1 說明原子外圍的電子 只能具有特定的能量,稱之為能階。 可簡單指出能階的存在及電子的波動性有密切關聯。 2-2 說明電子可以經由 吸收或發射特定能量(頻率)之光子由一個能階				不適用;此時適用之理	
子 只能具有特定的能量,稱之為能階。 ·可簡單指出能階的存在及電子的波動性有 密切關聯。 2-2 說明電子可以經由 吸 收或發射特定能量(頻 率)之光子由一個能階 躍躍到另一個能階,從				論稱為量子論。	
只能具有特定的能量,稱之為能階。 「可簡單指出能階的存在及電子的波動性有密切關聯。 2-2 說明電子可以經由 吸 收或發射特定能量(頻 率)之光子由一個能階 躍遷到另一個能階,從			2.原子光譜	2-1 說明原子外圍的電	
量,稱之為能階。 ·可簡單指出能階的存在及電子的波動性有 密切關聯。 2-2 說明電子可以經由 吸 收或發射特定能量(頻 率)之光子由一個能階 躍遷到另一個能階,從				子	
可簡單指出能階的存在及電子的波動性有密切關聯。 2-2 說明電子可以經由 吸 收或發射特定能量(頻 率)之光子由一個能階 躍選到另一個能階,從				只能具有特定的能	
在及電子的波動性有密切關聯。 2-2 說明電子可以經由 吸 收或發射特定能量(頻 率)之光子由一個能階 躍遷到另一個能階,從				量,稱之為能階。	
密切關聯。 2-2 說明電子可以經由 吸 收或發射特定能量(頻 率)之光子由一個能階 躍遷到另一個能階,從				• 可簡單指出能階的存	
2-2 說明電子可以經由 吸 收或發射特定能量(頻 率)之光子由一個能階 躍遷到另一個能階,從				在及電子的波動性有	
吸 收或發射特定能量(頻 率)之光子由一個能階 躍遷到另一個能階,從				密切關聯。	
收或發射特定能量(頻 率)之光子由一個能階 躍遷到另一個能階,從				2-2 說明電子可以經由	
率)之光子由一個能階 躍遷到另一個能階,從				吸	
躍遷到另一個能階,從				收或發射特定能量(頻	
				率)之光子由一個能階	
而引入原子光譜之概				躍遷到另一個能階,從	
				而引入原子光譜之概	
念。				念。	

Г		 	Г	Г	—
				• 不涉及任何數學推	
				導。	
				2-3 說明不同的原子有	
				不	
				同的光譜;經由測量一	
				個物體發出的原子光	
				譜,我們可以推論出它	
				的組成成分。	
F		九、宇宙學簡介	1.星體觀測及	1-1 簡介人類對星體的	
			哈伯定律	觀	
				測。	
				1-2 簡介宇宙中各種結	
				構	
				(如:太陽系、星系、	
				星系團等)的尺度。	
				1-3 由測量遠方星體之	
				光	
				譜與已知元素光譜之	
				對比(紅移現象),我	
				們得到哈伯定律。天文	
				學家因此推論星系間之	
				距離與時俱增。我們	
				生活在一個正在膨脹	
L					

			的宇宙中	
		2.宇宙起源	2-1 簡介宇宙演化的歷	
			史	